A convex lens $\left(n_{g}=1.5\right)$ of focal length 10 cm in air when immersed in a liquid behaves as a diverging lens of focal length 45 cm. The refractive index of the liquid: |
1.25 2 1.33 1.68 |
1.68 |
The correct answer is Option (4) → 1.68 $\frac{1}{f_{air}}=(n_g-1)\left(\frac{1}{R_1}-\frac{1}{R_2}\right)$ $\frac{1}{f_{liquid}}=(n_g-n_{liquid})\left(\frac{1}{R_1}-\frac{1}{R_2}\right)$ $⇒\frac{1}{f_{liquid}}=\frac{n_g-n_{liquid}}{n_g-1}.\frac{1}{f_{air}}$ $\frac{1}{-45}=\frac{1.5-n_{liquid}}{0.5}.\frac{1}{10}$ $-\frac{1}{45}=\frac{1.5-n_{liquid}}{10}$ $n_{liquid}-1.5=\frac{1}{9}=0.111$ $n_{liquid}≃1.6$ |