$\int\frac{e^{7\log_ex} - e^{6\log_ex}}{e^{4\log_ex} - e^{3\log_ex}} dx$ is equal to: |
$-\frac{x}{2}+c$ $\frac{x^2}{2}+c$ $\frac{x^3}{3}+c$ $\frac{x^4}{4}+c$ |
$\frac{x^4}{4}+c$ |
The correct answer is Option (4) → $\frac{x^4}{4}+c$ Given integral: $\int \frac{e^{7\log_e x} - e^{6\log_e x}}{e^{4\log_e x} - e^{3\log_e x}}\,dx$ Use the identity $e^{a\log_e x} = x^a$: $= \int \frac{x^7 - x^6}{x^4 - x^3} \, dx$ Simplify numerator and denominator: $= \int \frac{x^6(x - 1)}{x^3(x - 1)} \, dx$ Cancel common factor $(x - 1)$: $= \int \frac{x^6}{x^3} \, dx = \int x^3 \, dx$ $= \frac{x^4}{4} + C$ |