The threshold wavelength of silver is $3250 × 10^{-10}m$. The velocity of the electron ejected from the silver surface by ultra violet light of wavelength $2536 × 10^{-10}m$ is approximately: (Given $h = 4.14 × 10^{-15} eVs$) |
$6 × 10^5 ms^{-1}$ $0.6 × 10^8 ms^{-1}$ $61 × 10^3 ms^{-1}$ $0.3 × 10^6 ms^{-1}$ |
$6 × 10^5 ms^{-1}$ |
The correct answer is Option (1) → $6 × 10^5 ms^{-1}$ The energy of photon is given by - $E_{photon}=\frac{hc}{λ}=\frac{(6.626×10^{-34})(3×10^8)}{2536×10^{-10}}$ $E_{work\,function}=\frac{hc}{λ_{threshold}}=\frac{(6.6×10^{-34})(3×10^8)}{3250×10^{-10}}$ $E_{kinetic}=E_{photon}-E_{work\,function}$ $=6.6×10^{-34}\left(\frac{3×10^8}{2536×10^{-10}}-\frac{3×10^8}{3250×10^{-10}}\right)$ and, $E_{kinetic}=\frac{1}{2}mpv^2$ $⇒V=\sqrt{\frac{2E_{kinetic}}{mp}}$ $=\sqrt{\frac{2}{9.11×10^{-31}}×6.6×10^{-34}\left(\frac{3×10^8}{2536×10^{-10}}-\frac{3×10^8}{3250×10^{-10}}\right)}$ $≃6 × 10^5 m/s$ |