Let $\vec u,\vec v,\vec w$ be three vectors such that $|\vec u|=1, |\vec v|=2,|\vec w| = 3$. If the projection $\vec v$ of along $\vec u$ is equal to that of $\vec w$ along $\vec u$ and $\vec v,\vec w$ are perpendicular to each other, then $|\vec u-\vec v +\vec w|$ a equals |
14 $\sqrt{7}$ $\sqrt{14}$ 2 |
$\sqrt{14}$ |
We have, Projection of $\vec v$ along $\vec u$ = Projection of $\vec w$ along $\vec u$ $⇒\frac{\vec v.\vec u}{|\vec u|}=\frac{\vec w.\vec u}{|\vec u|}⇒\vec v.\vec u=\vec w.\vec u$ ...(i) Also, $\vec v$ and $\vec w$ are perpendicular to each other. $∴\vec v.\vec w=0$ ...(ii) Now, $|\vec u-\vec v +\vec w|^2=|\vec u|^2+|\vec v|^2+|\vec w|^2-2(\vec u.\vec v)-2(\vec v.\vec w)+2(\vec u.\vec w)$ $⇒|\vec u-\vec v +\vec w|^2=1+4+9$ [Using (i) and (ii)] $⇒|\vec u-\vec v +\vec w|=\sqrt{14}$ |