In a circle with centre O, PA and PB are tangents to the circle at point A and point B, respectively. C is a point on the major arc AB. If ∠ACB= 50°, then find the measure of ∠APB. |
100° 90° 80° 50° |
80° |
According to the concept, ⇒ \(\angle\)AOB = 2 x \(\angle\)ACB ⇒ \(\angle\)AOB = 2 x \({50}^\circ\) ⇒ \(\angle\)AOB = \({100}^\circ\) Consider the quadrilateral AOBP, ⇒ \(\angle\)A + \(\angle\)O + \(\angle\)B + \(\angle\)P = \({360}^\circ\) ⇒ \({90}^\circ\) + \({100}^\circ\) + \({90}^\circ\) + \(\angle\)P = \({360}^\circ\) ⇒ \(\angle\)P = \({360}^\circ\) - \({90}^\circ\) - \({90}^\circ\) - \({100}^\circ\) ⇒ \(\angle\)P = \({80}^\circ\) ⇒ \(\angle\)APB = \({80}^\circ\) Therefore, \(\angle\)APB is \({80}^\circ\). |