Solution of the differential equation $x \frac{d y}{d x}=y+\sqrt{x^2+y^2}$, is |
$x+\sqrt{x^2+y^2}=C y^2$ $y+\sqrt{x^2+y^2}=C y^2$ $x+\sqrt{x^2+y^2}=C x^2$ $y+\sqrt{x^2+y^2}=C x^2$ |
$y+\sqrt{x^2+y^2}=C x^2$ |
Substituting $y=v x$ and $\frac{d y}{d x}=v+x \frac{d v}{d x}$, we get $v+x \frac{d v}{d x}=v+\sqrt{1+v^2} \Rightarrow \frac{1}{\sqrt{1+v^2}} d v=\frac{1}{x} d x$ On integrating, we get $\log \left(v+\sqrt{v^2+1}\right)=\log x+\log C$ $\Rightarrow v+\sqrt{v^2+1}=C x \Rightarrow y+\sqrt{x^2+y^2}=C x^2$ |