If (a + b) : (b + c) : (c + a) = 7 : 6 : 5 and a + b + c = 54, then what will be the value of \(\frac{1}{a}\) : \(\frac{1}{b}\) : \(\frac{1}{c}\) ? |
3 : 4 : 2 4 : 3 : 6 1 : 5 : 7 8 : 3 : 9 |
4 : 3 : 6 |
(a + b) : (b + c) : (c + a) = 7 : 6 : 5 ......(ii) Here, adding all, ⇒ 2(a + b + c) = 18R ⇒ (a + b + c) = 9R = 54 ⇒ 1R = 6 We can find the value of a, b and c: ⇒ a + b + c = 9R .....(i) (a + b) = 7R .....(ii) (b + c) = 6R .....(iii) (c + a) = 5R .....(iv) After subtracting from (i); a = 3R; b = 4R; c = 2R a : b : c = 3 : 4 : 2 Now, ⇒ \(\frac{1}{a}\) : \(\frac{1}{b}\) : \(\frac{1}{c}\) = \(\frac{1}{3}\) : \(\frac{1}{4}\) : \(\frac{1}{2}\) = 4 : 3 : 6 |