If $A=\begin{bmatrix}2&-1&0\\1&1&2\\-1&0&1\end{bmatrix}$, then which of the following statement(s) is/are correct? (A) A is singular matrix Choose the correct answer from the options given below: |
(B) and (D) only (A) and (C) only (B) and (C) only (A) only |
(B) and (D) only |
The correct answer is Option (1) → (B) and (D) only $A = \begin{bmatrix} 2 & -1 & 0 \\ 1 & 1 & 2 \\ -1 & 0 & 1 \end{bmatrix}$ $|A| = 2 \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} - (-1) \begin{vmatrix} 1 & 2 \\ -1 & 1 \end{vmatrix} + 0 \begin{vmatrix} 1 & 1 \\ -1 & 0 \end{vmatrix}$ $|A| = 2(1*1 - 2*0) - (-1)(1*1 - 2*(-1)) + 0 = 2 - (-1)(1+2) = 2 + 3 = 5$ (A) A is singular → $|A| \neq 0$, so Incorrect (B) $|3A| = 3^3 \cdot |A| = 27 \cdot 5 = 135$ → Correct (C) $|\text{adj } A| = |A|^{3-1} = |A|^2 = 5^2 = 25$ → Incorrect (D) $|A^{-1}| = 1/|A| = 1/5$ → Correct |