If $A=\begin{bmatrix}3&2\\-1&1\end{bmatrix}$ and $B =\begin{bmatrix}-1&0\\2&5\\3&4\end{bmatrix}$, then $(BA)^T$ is equal to: |
$\begin{bmatrix}3&1&5\\2&9&10\end{bmatrix}$ $\begin{bmatrix}-3&1&5\\-2&9&10\end{bmatrix}$ $\begin{bmatrix}-3&-2\\1&9\\5&10\end{bmatrix}$ $\begin{bmatrix}3&2\\1&9\\5&10\end{bmatrix}$ |
$\begin{bmatrix}-3&1&5\\-2&9&10\end{bmatrix}$ |
The correct answer is Option (2) → $\begin{bmatrix}-3&1&5\\-2&9&10\end{bmatrix}$ $A=\begin{bmatrix}3&2\\-1&1\end{bmatrix}$ $B =\begin{bmatrix}-1&0\\2&5\\3&4\end{bmatrix}$ $BA=\begin{bmatrix}-1&0\\2&5\\3&4\end{bmatrix}\begin{bmatrix}3&2\\-1&1\end{bmatrix}$ $=\begin{bmatrix}-3&-2\\1&9\\5&10\end{bmatrix}$ $⇒(BA)^T=\begin{bmatrix}-3&1&5\\-2&9&10\end{bmatrix}$ |