The \(\Lambda ^o_m\) for \(CaSO_4\) at \(298 K\), if \(\Lambda ^o_{Ca^{2+}} = 119.0\, \ Scm^2mol^{-1}\) and \(\Lambda ^o_{SO_4^{2-}} = 160.0\, \ Scm^2mol^{-1}\) will be |
\(558\, \ Scm^2mol^{-1}\) \(139.5\, \ Scm^2mol^{-1}\) \(69.75\, \ Scm^2mol^{-1}\) \(279\, \ Scm^2mol^{-1}\) |
\(279\, \ Scm^2mol^{-1}\) |
The correct answer is option 4. \(279\, \ Scm^2mol^{-1}\). To calculate the molar conductivity at infinite dilution, \(\Lambda^o_m\), for calcium sulfate (\(CaSO_4\)) at \(298 \,K\), we use the following formula: \(\Lambda^o_m = \Lambda^o_{Ca^{2+}} + \Lambda^o_{SO_4^{2-}}\) Given: \(\Lambda^o_{Ca^{2+}} = 119.0 \, Scm^2mol^{-1}\) \(\Lambda^o_{SO_4^{2-}} = 160.0 \, Scm^2mol^{-1}\) Now, adding the contributions of both ions: \(\Lambda^o_m = 119.0 \, Scm^2mol^{-1} + 160.0 \, Scm^2mol^{-1}\) \(\Lambda^o_m = 279.0 \, Scm^2mol^{-1}\) Thus, the correct answer is: 4. \(279\, Scm^2mol^{-1}\). |