If x = 2 + \(\sqrt {3}\) Find \(\frac{x^2 - x + 1}{x^2 + 1 + x}\) |
\(\frac{2}{3}\) \(\frac{3}{4}\) \(\frac{4}{5}\) \(\frac{3}{5}\) |
\(\frac{3}{5}\) |
Formula → If x = a + b and a2 - b2 = 1, then \(\frac{1}{x}\) = a - b always ⇒ x = 2 + \(\sqrt {3}\) ⇒ \(\frac{1}{x}\) = 2 - \(\sqrt {3}\) Now put the values and find, \(\frac{x + \frac{1}{x} - 1}{x + \frac{1}{x} + 1}\) = \(\frac{2 + \sqrt {3} + 2 - \sqrt {3} - 1}{2 + \sqrt {3} + 2 - \sqrt {3} + 1}\) = \(\frac{3}{5}\) |