If $\frac{\sin A+\cos A}{\cos A}=\frac{17}{12}$, then the value of $\frac{1-\cos A}{\sin A}$ is: |
-5 1 $\frac{5}{12}$ $\frac{1}{5}$ |
$\frac{1}{5}$ |
\(\frac{sinA + cosA }{cosA}\) = \(\frac{17}{12}\) 12sinA + 12cosA = 17 cosA 12sinA = 5cosA tanA = \(\frac{5}{12}\) { we know, tanA = \(\frac{P}{B}\) } By using pythagoras theorem , P² + B² = H² 5² + 12² = H² H = 13 Now, \(\frac{1-cosA}{sinA}\) = \(\frac{1-cosA}{sinA}\) = \(\frac{1-B/H}{P/H}\) = \(\frac{H - B}{P}\) = \(\frac{13 - 12}{5}\) = \(\frac{1}{5}\) |