The solution of the differential equation $\cos x \sin y d x+\sin x \cos y d y=0$, is |
$\frac{\sin x}{\sin y}=C$ $\cos x+\cos y=C$ $\sin x+\sin y=C$ $\sin x \sin y=C$ |
$\sin x \sin y=C$ |
The correct answer is Option (4) → $\sin x \sin y=C$ $\cos x \sin y d x=-\sin x \cos y d y=0$ $\frac{dy}{dx}=\frac{\cos x \sin y}{-\sin x \cos y}$ $\frac{dy}{dx}=-\frac{\tan x}{\tan y}$ $\int\frac{1}{\tan y}dy=\int\frac{1}{\tan x}dx$ $\ln(|\sin x|) + \ln(|\sin y|) = C$ $\ln(|\sin x \sin y|) = C$ $\sin x \sin y = C$ |