The points on the curve $\frac{x^2}{9}+\frac{y^2}{16}=1$ at which the tangents are parallel to x-axis are: |
$(0, \pm 4)$ $(0,4)$ $(0,-4)$ $(0,0)$ |
$(0, \pm 4)$ |
The correct answer is Option (1) - $(0, \pm 4)$ tangents are parallel to x-axis $⇒\frac{dy}{dx}=0$ differentiating equation w.r.t. x $\frac{2x}{9}+\frac{2y}{16}\frac{dy}{dx}=0$ as $\frac{dy}{dx}=0$ $⇒\frac{2x}{9}=0⇒x=0$ from equation of curve at $x=0$ $\frac{y^2}{16}=1⇒y=±4$ Point $(0, \pm 4)$ |