The area enclosed by the curve $x=8 \cos t, y=4 \sin t$ between the lines $x=0$ and $x=4 \sqrt{3}$ is: |
$8 \sqrt{2}+\frac{32 \pi}{3}$ units $4 \sqrt{3}+\frac{16 \pi}{3}$ units $8 \sqrt{3}+\frac{32 \pi}{3}$ units $32 \pi$ units |
$8 \sqrt{3}+\frac{32 \pi}{3}$ units |
The correct answer is Option (3) - $8 \sqrt{3}+\frac{32 \pi}{3}$ units $x=8 \cos t$, $y=4 \sin t$ $\frac{x}{2}=4\cos t$, $y=4\sin t$ so $\frac{x^2}{4}+y^2=4^2(\cos^2t+\sin^2t)$ $⇒\frac{x^2}{2^2}+\frac{y^2}{12}=4^2$ or $\frac{x^2}{8^2}+\frac{y^2}{4^2}=1$, $y=\frac{1}{2}\sqrt{8^2-x^2}$ area I = area II by symmetry so area = $2×\int\limits_0^{4\sqrt{3}}\frac{1}{2}\sqrt{8^2-x^2}dx$ $=\int\limits_0^{4\sqrt{3}}\sqrt{8^2-x^2}dx$ $=\left[\frac{x}{2}\sqrt{8^2-x^2}+\frac{8^2}{2}\sin^{-1}\frac{x}{8}\right]_0^{4\sqrt{3}}$ $=8\sqrt{3}+\frac{32 \pi}{3}$ |