Target Exam

CUET

Subject

Physics

Chapter

Electromagnetic Waves

Question:

The magnetic field of a plane electromagnetic wave is given by $B_x=2 \times 10^{-7} \sin \left(0.6 \times 10^3 y+2 \times 10^{11} t\right)T$. An expression for its electric field is:

Options:

$E_x=2 \times 10^{-7} \sin \left(0.6 \times 10^3 y+2 \times 10^{11} t\right) V / M$

$E_y=60 \sin \left(0.6 \times 10^3 y+2 \times 10^{11} t\right) V / M$

$E_z=2 \times 10^{-7} \sin \left(0.6 \times 10^3 y+2 \times 10^{11} t\right) V / M$

$E_z=60 \sin \left(0.6 \times 10^3 y+2 \times 10^{11} t\right) V / M$

Correct Answer:

$E_z=60 \sin \left(0.6 \times 10^3 y+2 \times 10^{11} t\right) V / M$

Explanation:

The correct answer is Option (4) → $E_z=60 \sin \left(0.6 \times 10^3 y+2 \times 10^{11} t\right) V / M$

The magnetic field of a plane electromagnetic wave,

$B_x=2 \times 10^{-7} \sin \left(0.6 \times 10^3 y+2 \times 10^{11} t\right)T$

and,

$E_0=CB_0$

$⇒E_0=(3×10^8)×(2×10^{-7})$

$=60V/m$

$⇒E_z=60 \sin \left(0.6 \times 10^3 y+2 \times 10^{11} t\right) V / M$ [Direction by Right Hand Rule]