Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Probability

Question:

For a random variable x, probability distribution P(x) is given by $P(x) = \frac{k}{6}(3-x), x = 0,1,2$, then

Match List-I with List-II

List-I

List-II

(A) k is equal to

(I) $\frac{1}{2}$

(B) $P(x = 0)$

(II) 1

(C) $P(x <2)$

(III) $\frac{1}{6}$

(D) $P(1 < x ≤2)$

(IV) $\frac{5}{6}$

Choose the correct answer from the options given below:

Options:

(A)-(I), (B)-(II), (C)-(III), (D)-(IV)

(A)-(I), (B)-(IV), (C)-(III), (D)-(II)

(A)-(II), (B)-(I), (C)-(IV), (D)-(III)

(A)-(II), (B)-(IV), (C)-(I), (D)-(III)

Correct Answer:

(A)-(II), (B)-(I), (C)-(IV), (D)-(III)

Explanation:

The correct answer is Option (3) → (A)-(II), (B)-(I), (C)-(IV), (D)-(III)

List-I

List-II

(A) k is equal to

(II) 1

(B) $P(x = 0)$

(I) $\frac{1}{2}$

(C) $P(x <2)$

(IV) $\frac{5}{6}$

(D) $P(1 < x ≤2)$

(III) $\frac{1}{6}$

Given: $P(x) = \frac{k}{6}(3 - x)$ for $x = 0, 1, 2$

Use the total probability rule: $\sum P(x) = 1$

$P(0) = \frac{k}{6}(3 - 0) = \frac{3k}{6}$

$P(1) = \frac{k}{6}(3 - 1) = \frac{2k}{6}$

$P(2) = \frac{k}{6}(3 - 2) = \frac{k}{6}$

Total: $\frac{3k + 2k + k}{6} = \frac{6k}{6} = k$

Set $k = 1$ to satisfy total probability = 1

Now compute individual probabilities:

$P(x = 0) = \frac{3}{6} = \frac{1}{2}$

$P(x < 2) = P(0) + P(1) = \frac{3}{6} + \frac{2}{6} = \frac{5}{6}$

$P(1 < x \leq 2) = P(2) = \frac{1}{6}$