The shortest wavelength in the Balmer series of a hydrogen atom is (Given: $R=1.1 × 10^7 m^{-1}$) |
9116 Å 6562 Å 3637 Å 8204.1 Å |
3637 Å |
The correct answer is Option (3) → 3637 Å The wavelength of spectral lines is given by Rydberg’s formula: $$\frac{1}{\lambda} = R \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$ For Balmer series: $n_1 = 2$, $n_2 = 3,4,5,\dots$ The shortest wavelength corresponds to $n_2 \to \infty$: $$\frac{1}{\lambda_{\min}} = R \left( \frac{1}{2^2} - \frac{1}{\infty^2} \right) = R \cdot \frac{1}{4}$$ Hence, $$\lambda_{\min} = \frac{4}{R}$$ Taking $R = 1.097 \times 10^7 \ \text{m}^{-1}$, $$\lambda_{\min} = \frac{4}{1.097 \times 10^7} \approx 3.64 \times 10^{-7} \ \text{m} = 364 \ \text{nm}$$ Answer: $\lambda_{\min} = 364 \ \text{nm}$ |