Practicing Success

Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Indefinite Integration

Question:

Statement-1: The value of the integral $\int \frac{e^{3 x}+e^x}{e^{4 x}+1} d x$ is $\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{e^x-e^{-x}}{\sqrt{2}}\right)+C$

Statement-2: A primitive of the function $f(x)=\frac{x^2+1}{x^4+1}$ is $\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x^2-1}{\sqrt{2} x}\right)$

Options:

Statement-1 is True, Statement-2 is True; statement-2 is a correct explanation for Statement-1.

Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1.

Statement-1 is True, Statement-2 is False.

Statement-1 is False, Statement-2 is True.

Correct Answer:

Statement-1 is True, Statement-2 is True; statement-2 is a correct explanation for Statement-1.

Explanation:

A primitive of the function $f(x)=\frac{x^2+1}{x^4+1}$ is given by

$I=\int \frac{x^2+1}{x^4+1} d x=\int \frac{1+\frac{1}{x^2}}{x^2+\frac{1}{x^2}} d x$

$\Rightarrow I=\int \frac{1}{\left(x-\frac{1}{x}\right)^2+(\sqrt{2})^2} d\left(x-\frac{1}{x}\right)=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x-\frac{1}{x}}{\sqrt{2}}\right)+C$

$\Rightarrow I=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x^2-1}{\sqrt{2} x}\right)+C$

So, statement-2 is true.

Now, $I=\int \frac{e^{3 x}+e^x}{e^{4 x}+1} d x=\int \frac{\left(e^x\right)^2+1}{\left(e^x\right)^4+1} d\left(e^x\right)$

$\Rightarrow I=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{e^{2 x}-1}{\sqrt{2} e^x}\right)+C$        [Using statement-2]

$\Rightarrow I=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{e^x-e^{-x}}{\sqrt{2}}\right)+C$

So, statement- 1 is true. Also, statement-2 is a correct explanation for statement-1.