For the LPP Max $Z= 3x+4y , x+ y ≤40; x+2y ≤60, x ≥0, y ≥ 0$ the solution is : |
$x=20, y = 20,$ Max $Z=140$ $x=40, y = 0,$ Max $Z=120$ $x=0, y = 60,$ Max $Z=240$ $x=10, y = 30,$ Max $Z=130$ |
$x=20, y = 20,$ Max $Z=140$ |
The correct answer is Option (1) → $x=20, y = 20,$ Max $Z=140$ $Z= 3x+4y$ and, $x+ y ≤40$ $x+2y ≤60$ $x, y ≥ 0$ ∴ $Z_{max}$ at (20, 20) $⇒Z=3×20+4×20=140$ |