Match List – I with List – II.
Choose the correct answer from the options given below: |
A-I, B-III, C-IV, D-II A-III, B-I, C-II, D-IV A-I, B-III, C-II, D-IV A-III, B-I, C-IV, D-II |
A-III, B-I, C-II, D-IV |
The correct answer is Option (2) - A-III, B-I, C-II, D-IV (A) $\int\sin ^2(2 x+1) d x$ $=\frac{\int 1-\cos(4x+2)dx}{2}=\frac{x}{2}-\frac{\sin(4x+2)}{2×4}+C$ $=\frac{x}{2}-\frac{\sin(2x+1)\cos(2x+1)}{4}+C$ (III) (B) $\int\cos ^2(2 x+1) d x$ $=\frac{\int 1+\cos(4x+2)dx}{2}=\frac{x}{2}+\frac{\sin(4x+2)}{2×4}+C$ $=\frac{x}{2}+\frac{\sin(2x+1)\cos(2x+1)}{4}+C$ (I) (C) $\int\sin^3(2 x+1) d x$ $\int\sin^3(x)dx=\int\frac{3\sin x-\sin 3x}{4}dx$ so $\int\sin^3(2 x+1)=\int\frac{3\sin (2 x+1)-\sin (3(2 x+1))}{4}dx$ $=\frac{\cos 3(2 x+1)}{24}-\frac{3 \cos (2 x+1)}{8}+C$ (II) (D) $\int\cos ^3(2 x+1) d x$ $=\int\frac{\cos 3(2 x+1)+3\cos (2 x+1)}{4}dx$ $\frac{\sin 3(2 x+1)}{24}+\frac{3 \sin (2 x+1)}{8}+C$ (IV) |