An identity matrix can be written as $[a_{ij}]_{n×n}$ where, |
$aij=\left\{\begin{matrix}0, & when & i≠j \\k, & when & i=j \end{matrix}\right.$ $aij=\left\{\begin{matrix}0, & when & i≠j \\1, & when & i=j \end{matrix}\right.$ $aij=\left\{\begin{matrix}k, & when & i≠j \\0, & when & i=j \end{matrix}\right.$ $aij=\left\{\begin{matrix}1, & when & i≠j \\0, & when & i=j \end{matrix}\right.$ |
$aij=\left\{\begin{matrix}0, & when & i≠j \\1, & when & i=j \end{matrix}\right.$ |
The correct answer is Option (2) → $aij=\left\{\begin{matrix}0, & when & i≠j \\1, & when & i=j \end{matrix}\right.$ Identity matrix = $aij=\left\{\begin{matrix}0, & when & i≠j \\1, & when & i=j \end{matrix}\right.$ Only diagonal elements are not zero. |