The particular solution of the differential equation $\cos \left(\frac{d y}{d x}\right)=a,(a \in R) ; y=2$ at x = 0 is given by |
$\cos \left(\frac{y-2}{x}\right)=a$ $\cos \left(\frac{y-a}{x}\right)=2$ $-\sin \left(\frac{y-2}{x}\right)=a$ $-\sin \left(\frac{y-a}{x}\right)=2$ |
$\cos \left(\frac{y-2}{x}\right)=a$ |
The correct answer is Option (1) → $\cos \left(\frac{y-2}{x}\right)=a$ $\cos\frac{dy}{dx}=a⇒\int\, dy=\cos^{-1}a\int x\,dx$ so $y+c=(\cos^{-1}a)(x)$ at $x=0$, $y=2$ so $c=-2$ $⇒\frac{y-2}{x}=\cos^{-1}a⇒\cos\left(\frac{y-2}{x}\right)=a$ |