If \(\sin^{-1}x+\sin^{-1}y=\frac{\pi}{2}\), then value of \(\cos^{-1}x+\cos^{-1}y\) is |
\(\frac{\pi}{2}\) \(\pi\) \(0\) \(\frac{2\pi}{3}\) |
\(\frac{\pi}{2}\) |
The correct answer is Option (1) → \(\frac{\pi}{2}\) \(\sin^{-1}x+\sin^{-1}y=\frac{\pi}{2}\) $\cos^{-1}=\frac{\pi}{2}-\sin^{-1}a$ [Identity] $⇒\left(\frac{\pi}{2}-\cos^{-1}x\right)+\left(\frac{\pi}{2}-\cos^{-1}y\right)=\frac{\pi}{2}$ $⇒-\left(\cos^{-1}x+\cos^{-1}y\right)=\frac{\pi}{2}-\pi$ $⇒\cos^{-1}x+\cos^{-1}y=\frac{\pi}{2}$ |