Consider the production function $q = f(x_1, x_2)$ where the firm produces q amout of output $x_1$ amount of factor 1 and $x_2$ amount of factor 2. The firm decides to increase the employment level of both the factors $t (t>1)$. Identify the equation for decreasing returns to scale from the following: |
$q = f(x_1,x_2)$ $f (tx_1, tx_2) = t.f (x_1, x_2)$ $f (tx_1, tx_2) < t.f (x_1, x_2)$ $f (tx_1, tx_2) > t.f (x_1, x_2)$ |
$f (tx_1, tx_2) < t.f (x_1, x_2)$ |
The correct answer is Option (3) → $f (tx_1, tx_2) < t.f (x_1, x_2)$ In the production function q = f(x₁, x₂), if the firm increases all inputs by a factor t (where t > 1), then:
So, under decreasing returns to scale, output increases less than proportionately to the increase in inputs. |