The maximum value of $\sin x.\cos x$ is: |
1 $\frac{1}{2}$ $\frac{1}{4}$ $\sqrt{2}$ |
$\frac{1}{2}$ |
The correct answer is Option (2) → $\frac{1}{2}$ Given expression: \(\sin x \cdot \cos x\) Using identity: \[ \sin x \cos x = \frac{1}{2} \sin 2x \] The maximum value of \(\sin 2x\) is 1, so: \[ \max(\sin x \cos x) = \frac{1}{2} \times 1 = \frac{1}{2} \] |