Two coils have a mutual inductance 0.005 H. The current changes in the first coil according to the equation $I=I_0 \sin \omega t$, where $I_0=10 A$, and $\omega=100 \pi rad/s$. The maximum value of emf in the second coil is (in V): |
$2 \pi$ $5 \pi$ $6 \pi$ $12 \pi$ |
$5 \pi$ |
The correct answer is Option (2) → $5 \pi$ According to faraday law, $ε=M\frac{dI}{dt}$ M = Mutual inductance = 0.005 H $I(t)=I_0\sin(ωt)$ [given] $I_0=10A$ $ω=100\pi\,rad/s$ $\frac{dI}{dt}=I_0ω\cos(ωt)$ $ε_{max}=M.I_0.ω$ [Max. Current occurs when $\cos/ωt=1$] $ε_{max}=0.005×10×100\pi$ $=5\pi V$ |