$∫\frac{x^3}{x+1}dx$ is equal to |
$x-\frac{x^2}{2}+\frac{x^3}{3}-log |1+x|+c$ $x+\frac{x^2}{2}-\frac{x^3}{3}-log |1-x|+c$ $x-\frac{x^2}{2}-\frac{x^3}{3}-log |1+x|+c$ $x+\frac{x^2}{2}+\frac{x^3}{3}-log |1-x|+c$ |
$x-\frac{x^2}{2}+\frac{x^3}{3}-log |1+x|+c$ |
The correct answer is option (1) → $x-\frac{x^2}{2}+\frac{x^3}{3}-log |1+x|+c$ $I=∫\frac{x^3}{x+1}dx$ so dividing numerator by denominator $∫\frac{x^3+1-1}{x+1}dx$ $⇒∫\frac{x^3+1}{x+1}dx-∫\frac{1}{x+1}dx$ $x^3+1=(x+1)(x^2-x+1)$ $⇒∫\frac{(x+1)(x^2-x+1)}{x+1}dx-∫\frac{1}{x+1}dx$ $⇒∫x^2dx-∫xdx+∫1dx-∫\frac{1}{x+1}dx$ $⇒\frac{x^3}{3}-\frac{x^2}{2}+x+\log |1+x|+c$ |