The resistivity of the material of a wire of length 15 m, area of cross-section $6 × 10^{-7} m^2$ and resistance 10 Ω will be |
$4 × 10^{-7}Ω m$ $2 × 10^{-7}Ω m$ $3 × 10^{-7}Ω m$ $5 × 10^{-7}Ω m$ |
$4 × 10^{-7}Ω m$ |
The correct answer is Option (1) → $4 × 10^{-7}Ω m$ Resistance of a wire: $R = \rho \frac{L}{A}$ Given: $R = 10 \ \Omega$, $L = 15 \ \text{m}$, $A = 6 \times 10^{-7} \ \text{m}^2$ Resistivity: $\rho = R \frac{A}{L} = 10 \cdot \frac{6 \times 10^{-7}}{15}$ $\rho = \frac{6 \times 10^{-6}}{15} = 4 \times 10^{-7} \ \Omega\text{m}$ Resistivity = $4 \times 10^{-7} \ \Omega \text{m}$ |