The area of the parallelogram determined by the vectors $\hat{i}+2 \hat{j}+3 \hat{k}$ and $3 \hat{i}-2 \hat{j}+\hat{k}$ is |
$8 \sqrt{3}$ $4 \sqrt{3}$ $16 \sqrt{3}$ $2 \sqrt{3}$ |
$8 \sqrt{3}$ |
$\vec{v_1}=\hat{i}+2 \hat{j}+3 \hat{i}$ $\vec{v}_2=3 \hat{i}-2 \hat{j}+\hat{k}$ finding $\vec{v_1} × \vec{v_2}$ using determinant $\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 3 & -2 & 1\end{array}\right|$ $\vec{v}_1 \times \vec{v}_2=8 \hat{i}+8 \hat{j}+(-8) \hat{k}$ so area of perallelogram $=\left|\vec{v}_1 \times \vec{v}_2\right|=\sqrt{8^2+8^2+8^2}$ $= 8 \sqrt{3}$ |