$\int \frac{d x}{1+\tan x}$ is equal to: |
$\frac{x}{2}+\frac{1}{2} \log |\cos x-\sin x|+c$, C is an arbitrary constant $\frac{x}{2}+\frac{1}{2} \log |\cos x+\sin x|+c$, C is an arbitrary constant $\frac{x}{2}-\frac{1}{2} \log |\cos x-\sin x|+c$, C is an arbitrary constant $\frac{x}{2}-\frac{1}{2} \log |\cos x+\sin x|+c$, C is an arbitrary constant |
$\frac{x}{2}+\frac{1}{2} \log |\cos x+\sin x|+c$, C is an arbitrary constant |
The correct answer is Option (2) → $\frac{x}{2}+\frac{1}{2} \log |\cos x+\sin x|+c$, C is an arbitrary constant $\int \frac{d x}{1+\tan x}=\int\frac{\cos x}{\cos x+\sin x}dx$ $=\frac{1}{2}\int\frac{\cos x-\sin x+\cos x+\sin x}{\cos x+\sin x}dx$ $=\frac{1}{2}\int\frac{\cos x-\sin x}{\cos x+\sin x}dx+\int\frac{1}{2}dx$ $=\frac{x}{2}+\frac{1}{2}\log|\cos x+\sin x|+c$ |