If OA is equally inclined to OX, OY, OZ and if A is $\sqrt{3}$ units from the origin, then the coordinates of A are |
(3, 3, 3) (-1, 1, -1) (-1, 1, 1) (1, 1, 1) |
(1, 1, 1) |
We have, $l = m = n = \frac{1}{\sqrt{3}}$ $∴ \vec{OA}= |\vec{OA}| (l\hat{i}+m\hat{j}+n\hat{k})$ $⇒\vec{OA}= \sqrt{3}\left(\frac{1}{\sqrt{3}}\hat{i}+\frac{1}{\sqrt{3}}\hat{j}+\frac{1}{\sqrt{3}}\hat{k}\right)= \hat{i}=\hat{j}+\hat{k}$ So, coordinates of A are (1, 1, 1) |