From the top of a 195-m high cliff, the angles of depression of the top and bottom of a tower are 30° and 60°, respectively. Find the height of the tower (in m). |
$195\sqrt{3}$ 195 130 65 |
130 |
⇒ Let RT = (195 - a)m and PQ = b m Now for triangle RST ⇒ tan \({30}^\circ\) = \(\frac{195 - a}{b}\) ⇒ b = (195 - a)\(\sqrt { 3}\) And for triangle PQR ⇒ tan \({60}^\circ\) = \(\frac{195 }{b}\) ⇒ b = \(\frac{195 }{√3}\) Now, ⇒ b = (195 - a)\(\sqrt { 3}\) = \(\frac{195 }{√3}\) ⇒ 195 = 585 - 3a ⇒ 3a = 390 ⇒ a = 130m Therefore, height of tower is 130m. |