For $I = \begin{bmatrix}1&0\\0&1\end{bmatrix}$, if $A =\begin{bmatrix}a&b\\c&-a\end{bmatrix}$ be such that $A^2 = I$, then: |
$1+a^2+bc=0$ $1-a^2-bc=0$ $1-a^2+bc=0$ $1+a^2-bc=0$ |
$1-a^2-bc=0$ |
The correct answer is Option (2) → $1-a^2-bc=0$ $A =\begin{bmatrix}a&b\\c&-a\end{bmatrix}$ $A^2=\begin{bmatrix}a&b\\c&-a\end{bmatrix}\begin{bmatrix}a&b\\c&-a\end{bmatrix}=\begin{bmatrix}a^2+bc&ab-ab\\ac-ac&bc+a^2\end{bmatrix}$ $=\begin{bmatrix}a^2+bc&0\\0&bc+a^2\end{bmatrix}=\begin{bmatrix}1&0\\0&1\end{bmatrix}$ $⇒a^2+bc=1$ $∴1-a^2-bc=0$ |