Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Matrices

Question:

For $I = \begin{bmatrix}1&0\\0&1\end{bmatrix}$, if $A =\begin{bmatrix}a&b\\c&-a\end{bmatrix}$ be such that $A^2 = I$, then:

Options:

$1+a^2+bc=0$

$1-a^2-bc=0$

$1-a^2+bc=0$

$1+a^2-bc=0$

Correct Answer:

$1-a^2-bc=0$

Explanation:

The correct answer is Option (2) → $1-a^2-bc=0$

$A =\begin{bmatrix}a&b\\c&-a\end{bmatrix}$

$A^2=\begin{bmatrix}a&b\\c&-a\end{bmatrix}\begin{bmatrix}a&b\\c&-a\end{bmatrix}=\begin{bmatrix}a^2+bc&ab-ab\\ac-ac&bc+a^2\end{bmatrix}$

$=\begin{bmatrix}a^2+bc&0\\0&bc+a^2\end{bmatrix}=\begin{bmatrix}1&0\\0&1\end{bmatrix}$

$⇒a^2+bc=1$

$∴1-a^2-bc=0$