Consider the lines $l_1:\frac{x-1}{0}=\frac{y-1}{1}=\frac{2-z}{1}$ and $l_2:\frac{x}{2}=\frac{y}{0}=\frac{2z-1}{4}$, then which of the following are correct? (A) Direction Ratio's of $l_1= <0,1,1 >$ Choose the correct answer from the options given below: |
(B) and (D) only (A) and (C) only (A), (B) and (C) only (D) only |
(B) and (D) only |
The correct answer is Option (1) → (B) and (D) only (A) Direction Ratio's of $l_1= <0,1,1 >$ (Incorrect) Given: Line $l_1$: $\displaystyle \frac{x - 1}{0} = \frac{y - 1}{1} = \frac{2 - z}{1}$ Line $l_2$: $\displaystyle \frac{x}{2} = \frac{y}{0} = \frac{2z - 1}{4}$ (A) Direction ratios of $l_1$: $\displaystyle \frac{x - 1}{0} = \frac{y - 1}{1} = \frac{2 - z}{1}$ ⟹ Direction ratios: $0, 1, -1$ (A) is incorrect (B) Direction ratios of $l_2$: $\displaystyle \frac{x}{2} = \frac{y}{0} = \frac{2z - 1}{4}$ Middle term $\frac{y}{0}$ implies $y$ is constant ⇒ line is parallel to the XZ-plane. Let $\displaystyle \frac{x}{2} = \frac{2z - 1}{4} = \lambda$ Then: $x = 2\lambda$, $2z - 1 = 4\lambda \Rightarrow z = 2\lambda + \frac{1}{2}$ So direction ratios = $\langle 2, 0, 2 \rangle$ (B) is correct Now angle between lines $l_1$ and $l_2$: Direction ratios:
Angle θ is given by: $\cos \theta = \frac{\vec{d_1} \cdot \vec{d_2}}{|\vec{d_1}| |\vec{d_2}|}$ Dot product: $\vec{d_1} \cdot \vec{d_2} = 0 \cdot 2 + 1 \cdot 0 + (-1) \cdot 2 = -2$
$|\vec{d_1}| = \sqrt{0^2 + 1^2 + (-1)^2} = \sqrt{2}$ $\cos \theta = \frac{-2}{\sqrt{2} \cdot \sqrt{8}} = \frac{-2}{\sqrt{16}} = \frac{-2}{4} = -\frac{1}{2}$ $\Rightarrow \theta = \cos^{-1} \left(-\frac{1}{2}\right) = \frac{2\pi}{3}$ (D) is correct, (C) is incorrect |