If A and B are two events such that $P(A) = \frac{1}{2}, P(B) =\frac{1}{3}$ and $P(A∩B) =\frac{1}{4}$ then which of the following statements are true? (A) A and B are independent events Choose the correct answer from the options given below: |
(A), (B) and (C) only (B), (C) and (D) only (A) and (B) only (B) and (C) only |
(B), (C) and (D) only |
The correct answer is Option (2) → (B), (C) and (D) only (A) A and B are independent events (False) Given: $P(A) = \frac{1}{2},\quad P(B) = \frac{1}{3},\quad P(A \cap B) = \frac{1}{4}$ (A): A and B are independent if: $P(A \cap B) = P(A) \cdot P(B)$ $\frac{1}{4} \overset{?}{=} \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$ False. So, A and B are not independent. (B): $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{4}}{\frac{1}{3}} = \frac{3}{4}$ True. (C): $P(A'|B') = \frac{P(A' \cap B')}{P(B')}$ $P(B') = 1 - P(B) = \frac{2}{3}$ $P(A' \cap B') = 1 - P(A \cup B)$ $P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{1}{2} + \frac{1}{3} - \frac{1}{4} = \frac{6 + 4 - 3}{12} = \frac{7}{12}$ $P(A' \cap B') = 1 - \frac{7}{12} = \frac{5}{12}$ $P(A'|B') = \frac{\frac{5}{12}}{\frac{2}{3}} = \frac{5}{12} \cdot \frac{3}{2} = \frac{15}{24} = \frac{5}{8}$ True. (D): $P(A'|B) = \frac{P(A' \cap B)}{P(B)}$ $P(A' \cap B) = P(B) - P(A \cap B) = \frac{1}{3} - \frac{1}{4} = \frac{4 - 3}{12} = \frac{1}{12}$ $P(A'|B) = \frac{\frac{1}{12}}{\frac{1}{3}} = \frac{1}{12} \cdot \frac{3}{1} = \frac{3}{12} = \frac{1}{4}$ True. |