If $2(2x+3) -10≤6(x-1) $ and $\frac{2x-3}{4}+6≥3+\frac{4x}{3}, x\in N $ then number of solution for 'x' are |
2 3 0 1 |
2 |
The correct answer is Option (1) → 2 $2(2x+3)-10≤6(x-1)$ $4x+6-10≤6x-6$ $4x-4≤6x-6$ $2≤2x$ $x≥1$ and, $\frac{2x-3}{4}+6≥3+\frac{4x}{3}$ $\frac{2x-3}{4}-\frac{4x}{3}≥-3$ $\frac{3(2x-3)-16x}{12}≥-3$ $\frac{-(10x+9)-16x}{12}≥-3$ $⇒10x+9≤36$ $⇒x=2.5$ ∴ No. of solutions = 2 (x = 1, 2) |