The differential equation of the family of parabola $y^2=4ax$ where a is an arbitrary constant is : |
$2x\frac{dy}{dx}= y $ $x\frac{dy}{dx}= y $ $y\frac{dy}{dx}= \frac{x}{2} $ $2y\frac{dy}{dx}= x^2 $ |
$2x\frac{dy}{dx}= y $ |
The correct answer is Option (1) → $2x\frac{dy}{dx}= y $ $y^2=4ax$ No. of arbitrary constants = 1 → order = 1 so $2y\frac{dy}{dx}=4a$ $2y\frac{dy}{dx}=\frac{y^2}{x}$ $⇒2x\frac{dy}{dx}=y$ |