An electron having charge $1.6×10^{-19} C$ and mass $9×10^{-31} kg$ is moving with $4 × 10^6 m/s$ speed in a magnetic field $2×10^{-1} T$ in a circular orbit. The force experienced by the electron and the radius of the circular orbit, respectively will be : |
$1.28 × 10^{-14} N, 1.1×10^{-3} m$ $1.28 × 10^{-15} N, 1.2 × 10^{-12} m$ $1.28 × 10^{-13} N, 1.1×10^{-4} m$ $1.28 × 10^{-12} N, 1.1×10^{-5} m$ |
$1.28 × 10^{-13} N, 1.1×10^{-4} m$ |
The correct answer is Option (3) → $1.28 × 10^{-13} N, 1.1×10^{-4} m$ Using Lorentz force, $F=qvB$ $=(1.6×10^{-19})(4 × 10^6)(2×10^{-1})$ $=1.28×10^{-13}N$ Radius of circular orbit (r), $r=\frac{mv}{qB}=\frac{9×10^{-31}×4×10^6}{1.6×10^{-19}×2×10^{-1}}=1.1×10^{-4}m$ |