$\int\frac{e^{2x}-1}{e^{2x}+1}dx =$ |
$\log |e^x+e^{-x}|+C$: C is an arbitrary constant $\log|e^{2x}+1|+C$: C is an arbitrary constant $\log|e^{2x}-e^{-x}|+C$: C is an arbitrary constant $\log|e^{2x}-1|+C$: C is an arbitrary constant |
$\log |e^x+e^{-x}|+C$: C is an arbitrary constant |
The correct answer is Option (1) → $\log |e^x+e^{-x}+C$: C is an arbitrary constant Given integral: $\int \frac{e^{2x} - 1}{e^{2x} + 1} \, dx$ Let $t = e^{x} \Rightarrow e^{2x} = t^2,\ dx = \frac{dt}{t}$ Substitute in the integral: $\int \frac{t^2 - 1}{t^2 + 1} \cdot \frac{1}{t} \, dt = \int \frac{t^2 - 1}{t(t^2 + 1)} \, dt$ Use partial fractions: $\frac{t^2 - 1}{t(t^2 + 1)} = \frac{A}{t} + \frac{Bt + C}{t^2 + 1}$ Multiply both sides by $t(t^2 + 1)$: $t^2 - 1 = A(t^2 + 1) + (Bt + C)t$ $= A(t^2 + 1) + Bt^2 + Ct$ $= (A + B)t^2 + Ct + A$ Compare coefficients:
Solve: $A = -1,\ B = 2,\ C = 0$ So the integral becomes: $\int \left( \frac{-1}{t} + \frac{2t}{t^2 + 1} \right) dt$ $= -\ln |t| + \ln (t^2 + 1) + C$ $= \ln \left| \frac{t^2 + 1}{t} \right| + C$ Substitute $t = e^x$: $= \ln \left| \frac{e^{2x} + 1}{e^x} \right| + C$ $= \ln |e^x + e^{-x}| + C$ |