Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Applications of Derivatives

Question:

Match List-I with List-II

List-I List-II
(A) $|A^T|$ (I) $B^{-1}A^{-1}$
(B) $A(adj\, A)$ (II) $(adj\, A)$
(C) $A^{-1}|A|$ (III) $(adj\, A)A$
(D) $(AB)^{-1}$ (IV) $|A|$

Choose the correct answer from the options given below :

Options:

(A)-(I), (B)-(II), (C)-(IV), (D)-(III)

(A)-(IV), (B)-(III), (C)-(II), (D)-(I)

(A)-(IV), (B)-(III), (C)-(I), (D)-(II)

(A)-(IV), (B)-(II), (C)-(III), (D)-(I)

Correct Answer:

(A)-(IV), (B)-(III), (C)-(II), (D)-(I)

Explanation:

The correct answer is option (2) → (A)-(IV), (B)-(III), (C)-(II), (D)-(I)

(A) $|A^T|=|A|$ (IV)

(B) $A(adj\,A)=(adj\,A)A$ (III)

(C) $A^{-1}|A|=(adj\,A)$

as $A\,adj\,A=I|A|$

pre multiplying with $A^{-1}$

$adj\,A=A^{-1}|A|$ (II)

(D) $(AB)^{-1}=B^{-1}A^{-1}$ (I)