Practicing Success

Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Continuity and Differentiability

Question:

The values of A and B so that function f (x) defined by

$f(x)=\left\{\begin{array}{l}x+A \sqrt{2} \sin x, & 0 \leq x<\frac{\pi}{4} \\ 2 x \cot x+B, & \frac{\pi}{4} \leq x<\frac{\pi}{2} \\ A \cos 2 x-B \sin x, & \frac{\pi}{2} \leq x \leq \pi\end{array}\right.$

become continuous, respectively are

Options:

$\frac{-\pi}{12}, \frac{\pi}{6}$

$\frac{\pi}{6}, \frac{-\pi}{12}$

$\frac{\pi}{12}, \frac{\pi}{6}$

$\frac{\pi}{6}, \frac{\pi}{12}$

Correct Answer:

$\frac{\pi}{6}, \frac{-\pi}{12}$

Explanation:

$f(x)=\left\{\begin{array}{l} x+A \sqrt{2} \sin x & 0 \leq x<\pi / 4 \\ 2 x \cot x+B & \pi / 4 \leq x<\pi / 2 \\ A \cos 2 x-B \sin x & \pi / 2 \leq x \leq \pi \end{array}\right.$

L.H. limit at $x<\frac{\pi}{4}$

$=\lim\limits_{x \rightarrow \pi / 4^{-}} x+A \sqrt{2} \sin x=\frac{\pi}{4}+A \sqrt{2} \sin \frac{\pi}{4}=\frac{\pi}{4}+A \sqrt{2} \times \frac{1}{\sqrt{2}}=A+\frac{\pi}{4}$

R.H. limit $=\lim\limits_{x \rightarrow \pi / 4^{+}} 2 x \cot x+B=\frac{2 \pi}{4} \cdot \cot \frac{\pi}{4}+B=\frac{\pi}{2}+B$

$A+\frac{\pi}{4}=B+\frac{\pi}{2} \Rightarrow A-B=\frac{\pi}{4}$            ..........(1)

L.H. limit at $x<\frac{\pi}{2}$

$=\lim\limits_{x \rightarrow \pi / 2}-(2 x \cot x+B)=2 \times \frac{\pi}{2} \cot \frac{\pi}{2}+B=B$

RH limit = $x \lim\limits_{x \rightarrow \pi / 2}+A \cos 2 x-B \sin x=A \cos \pi-B \sin \frac{\pi}{2}$

= − A − B

− A − B = B ⇒ a = −2B            ..........(2)

$-3 B=\frac{\pi}{4} \Rightarrow B=\frac{-\pi}{12}, A=+\frac{\pi}{6}=\frac{\pi}{6}$

Hence (2) is the correct answer.