Sodium has a work function of 2 eV. Calculate the maximum energy and speed of the emitted electrons, when sodium is illuminated by radiation of wavelength 150 nm: |
$7.5 \times 10^{-19} J$ and $3.2 \times 10^3 m / s$ $10.1 \times 10^{-19} J$ and $1.5 \times 10^6 m / s$ $7 \times 10^{-15} J$ and $1.2 \times 10^4 m / s$ $3.5 \times 10^{-19} J$ and $2.4 \times 10^6 m / s$ |
$10.1 \times 10^{-19} J$ and $1.5 \times 10^6 m / s$ |
The correct answer is Option (2) → $13.2 \times 10^{-19} J$ and $1.5 \times 10^6 m / s$ The energy of the photon (E) is - $E_{photon}=\frac{hc}{λ}=\frac{6.626×10^{-34}×3×10^8}{150×10^{-9}}J$ $=1.33×10^{-18}J$ $(K.E.)_{max}=hv-\phi_0$ $=1.33×10^{-18}-2×1.6×10^{-19}$ $=1.33×10^{-19}-3.2×10^{-19}$ $=(13.3-3.2)×10^{-19}$ $=10.1×10^{-19}$ $K_{max}=\frac{1}{2}mv^2$ $⇒v=\sqrt{\frac{2K_{max}}{m}}$ $⇒v=\sqrt{\frac{2×10.1×10^{-19}}{9.11×10^{-31}}}$ $=10^{-6}×\sqrt{\frac{20.1}{9.11}}$ $≃1.5×10^{-6}m/s$ |