For $x ∈ (0,\frac{\pi}{2}),\int\frac{1}{\sin^2x+\sin 2x} dx$ is equal to |
$\frac{1}{2}\log\left|\frac{\tan x+2}{\tan x-2}\right|+C$, where C is constant of integration $\frac{1}{2}\log\left|\frac{\tan x}{\tan x+2}\right|+C$, where C is constant of integration $\frac{1}{2}\log\left|\frac{\tan x+2}{\tan x}\right|+C$, where C is constant of integration $\frac{1}{2}\log\left|\frac{\tan x+1}{\tan x+2}\right|+C$, where C is constant of integration |
$\frac{1}{2}\log\left|\frac{\tan x}{\tan x+2}\right|+C$, where C is constant of integration |
The correct answer is Option (2) → $\frac{1}{2}\log\left|\frac{\tan x}{\tan x+2}\right|+C$, where C is constant of integration Given: $\displaystyle \int \frac{1}{\sin^2 x + \sin 2x} \, dx$ for $x \in \left(0, \frac{\pi}{2}\right)$ Try substitution $u = \tan x$ Then:
So: $\sin^2 x + \sin 2x = \frac{u^2}{1 + u^2} + \frac{2u}{1 + u^2} = \frac{u^2 + 2u}{1 + u^2}$ $dx = \frac{1}{1 + u^2} du$ So the integral becomes: $\int \frac{1}{\frac{u^2 + 2u}{1 + u^2}} \cdot \frac{1}{1 + u^2} du = \int \frac{1 + u^2}{u^2 + 2u} \cdot \frac{1}{1 + u^2} du = \int \frac{1}{u^2 + 2u} du$ Now simplify and integrate: $\int \frac{1}{u(u + 2)} du = \int \left( \frac{1}{2u} - \frac{1}{2(u + 2)} \right) du$ $= \frac{1}{2} \ln|u| - \frac{1}{2} \ln|u + 2| + C = \frac{1}{2} \ln \left| \frac{u}{u + 2} \right| + C$ Recall $u = \tan x$ Final Answer: $\frac{1}{2} \ln \left| \frac{\tan x}{\tan x + 2} \right| + C$ |