Find the integral \(\int sin\frac{5}{2}x dx\) |
$\frac{5}{2}\cos {\frac{5}{2}}x+c$ $\frac{2}{5}\cos {\frac{5}{2}}x+c$ $\frac{5}{2}\sin {\frac{5}{2}}x+c$ $\frac{-5}{2}\cos {\frac{5}{2}}x+c$ |
$\frac{-5}{2}\cos {\frac{5}{2}}x+c$ |
The correct answer is Option (4) → $\frac{-5}{2}\cos {\frac{5}{2}}x+c$ Put, $\frac{5}{2}x=t$ \(\int \sin\frac{5}{2}x dx=\frac{5}{2}\int \sin t\,dt\) $⇒\frac{5}{2}\cos t=-\frac{5}{2}\cos\frac{5}{2}x+C$ |