Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Indefinite Integration

Question:

Find the integral \(\int sin\frac{5}{2}x dx\)

Options:

$\frac{5}{2}\cos {\frac{5}{2}}x+c$

$\frac{2}{5}\cos {\frac{5}{2}}x+c$

$\frac{5}{2}\sin {\frac{5}{2}}x+c$

$\frac{-5}{2}\cos {\frac{5}{2}}x+c$

Correct Answer:

$\frac{-5}{2}\cos {\frac{5}{2}}x+c$

Explanation:

The correct answer is Option (4) → $\frac{-5}{2}\cos {\frac{5}{2}}x+c$

Put, $\frac{5}{2}x=t$

\(\int \sin\frac{5}{2}x dx=\frac{5}{2}\int \sin t\,dt\)

$⇒\frac{5}{2}\cos t=-\frac{5}{2}\cos\frac{5}{2}x+C$