Consider the differential equation $\frac{dy}{dx}=\frac{y+1}{x+1}$, and y = 0 where x = 2. The value of y at x = 3 is: |
0 $\frac{1}{3}$ 2 3 |
$\frac{1}{3}$ |
The correct answer is option (2) → $\frac{1}{3}$ $\frac{dy}{dx}=\frac{y+1}{x+1}$ $⇒\int\frac{dy}{y+1}=\int\frac{dx}{x+1}$ $⇒ln|y+1|=ln|x+1|+C$ and, $y=0$ when $x=2$ $∴ln|1|=ln|3|+C$ $⇒C=-ln|3|$ $∴ln|y+1|=ln|4|-ln|3|$ $ln|y+1|=ln|\frac{4}{3}|$ $⇒y+1=\frac{4}{3}$ $⇒3y=1$ $⇒y=\frac{1}{3}$ |