The solution of the differential equation $(x + 1)\frac{dy}{dx}+1-2e^{-y}= 0; y(0) = 0$ is |
$|(x-1) (e^y-2)| = 1$ $|(x+1) (e^y-2)| = 1$ $|(x+1) (e^y+2)| = 1$ $|(x-2) (e^y-2)| = 1$ |
$|(x+1) (e^y-2)| = 1$ |
The correct answer is Option (2) → $|(x+1) (e^y-2)| = 1$ Given differential equation: $ (x + 1)\frac{dy}{dx} + 1 - 2e^{-y} = 0 $ Rewriting: $ (x + 1)\frac{dy}{dx} = 2e^{-y} - 1 $ $ \frac{dy}{dx} = \frac{2e^{-y} - 1}{x + 1} $ Separate variables: $ \frac{1}{2e^{-y} - 1} \, dy = \frac{1}{x + 1} \, dx $ Integrate both sides: $ \int \frac{1}{2e^{-y} - 1} \, dy = \int \frac{1}{x + 1} \, dx $ Substitute $u = e^{-y} \Rightarrow dy = -\frac{1}{u} \, du$: $ -\int \frac{1}{u(2u - 1)} \, du = \ln|x + 1| + C $ Using partial fractions: $ \frac{1}{u(2u - 1)} = \frac{-1}{u} + \frac{2}{2u - 1} $ Then: $ -\int \left( \frac{-1}{u} + \frac{2}{2u - 1} \right) du = \ln|x + 1| + C $ $ \int \left( \frac{1}{u} - \frac{2}{2u - 1} \right) du = \ln|x + 1| + C $ $ \ln|u| - \ln|2u - 1| = \ln|x + 1| + C $ Back-substitute $u = e^{-y}$: $ \ln(e^{-y}) - \ln(2e^{-y} - 1) = \ln|x + 1| + C $ $ -y - \ln(2e^{-y} - 1) = \ln|x + 1| + C $ $ \Rightarrow \ln \left( \frac{e^{-y}}{2e^{-y} - 1} \right) = \ln|x + 1| + C $ $ \Rightarrow \ln \left( \frac{1}{2 - e^{y}} \right) = \ln|x + 1| + C $ $ \Rightarrow \ln \left( \frac{1}{2 - e^{y}} \right) - \ln|x + 1| = C $ $ \Rightarrow \ln \left( \frac{1}{(2 - e^{y})(x + 1)} \right) = C $ $ \Rightarrow (2 - e^{y})(x + 1) = \text{constant} $ Upon substituting y(0)=0 , C = 1 $ \Rightarrow |(x + 1)(e^y - 2)| = 1 $ |