If $\int e^x \left(\frac{x-1}{(x+1)^3}\right) dx =\frac{A. e^x}{(x + 1)^B}+C$, where C is constant of integration then which of the following are correct? (A) A = -1 Choose the correct answer from the options given below: |
(A) and (C) only (B) only (B) and (D) only (A) and (D) only |
(B) and (D) only |
The correct answer is Option (3) → (B) and (D) only (A) A = -1 (Incorrect) Given: $\int e^x \left( \frac{x - 1}{(x + 1)^3} \right) dx = \frac{A e^x}{(x + 1)^B} + C$ Differentiate RHS: $\frac{d}{dx} \left( \frac{A e^x}{(x + 1)^B} \right)$ $= A \cdot \left( \frac{e^x}{(x + 1)^B} - \frac{B e^x}{(x + 1)^{B + 1}} \right)$ $= A e^x \left( \frac{1}{(x + 1)^B} - \frac{B}{(x + 1)^{B + 1}} \right)$ Compare with the integrand: $e^x \left( \frac{x - 1}{(x + 1)^3} \right)$ Cancel $e^x$ from both sides: $\frac{x - 1}{(x + 1)^3} = A \left( \frac{1}{(x + 1)^B} - \frac{B}{(x + 1)^{B + 1}} \right)$ Assume $B = 3$ Then RHS becomes: $A \left( \frac{1}{(x + 1)^3} - \frac{3}{(x + 1)^4} \right)$ Make common denominator: $= A \cdot \frac{(x + 1) - 3}{(x + 1)^4} = A \cdot \frac{x - 2}{(x + 1)^4}$ ≠ LHS Now assume $B = 2$ RHS becomes: $A \left( \frac{1}{(x + 1)^2} - \frac{2}{(x + 1)^3} \right)$ Common denominator: $= A \cdot \frac{(x + 1) - 2}{(x + 1)^3} = A \cdot \frac{x - 1}{(x + 1)^3}$ Matches LHS ⇒ $A = 1$, $B = 2$ Correct options: (B) A = 1 and (D) B = 2 |