A hot electric iron has resistance of 88 Ω and is used with 220 V source. The electrical energy consumed in 4 h is |
$7.92 × 10^6 J$ $7.92 × 10^7 J$ $2.2 × 10^3 J$ $1.32 × 10^5 J$ |
$7.92 × 10^6 J$ |
The correct answer is Option (1) → $7.92 × 10^6 J$ Electrical energy consumed: $E = P \cdot t = \frac{V^2}{R} \cdot t$ Given: $V = 220\ \text{V}$, $R = 88\ \Omega$, $t = 4\ \text{h} = 4 \cdot 3600 = 14400\ \text{s}$ Power: $P = \frac{V^2}{R} = \frac{220^2}{88} = \frac{48400}{88} = 550\ \text{W}$ Energy: $E = 550 \cdot 14400 = 7,920,000\ \text{J} \approx 7.92 \times 10^6\ \text{J}$ Final Answer: $E \approx 7.92 \times 10^6\ \text{J}$ |