The area of region bounded by the curve $y^2 = 4ax$ and the straight line $x = 2a, a > 0$ in the first quardant is: |
$\frac{8a^3}{3}$ sq. units $\frac{8\sqrt{2}a^2}{3}$ sq. units $\frac{32a^3}{3}$ sq. units $\frac{64a^3}{3}$ sq. units |
$\frac{8\sqrt{2}a^2}{3}$ sq. units |
The correct answer is Option (2) → $\frac{8\sqrt{2}a^2}{3}$ sq. units Given the parabola: $y^2 = 4ax$ Given the vertical line: $x = 2a$ The required area lies in the first quadrant, so only the upper half of the parabola is considered. From $y^2 = 4ax$, the positive root gives: $y = 2\sqrt{ax}$ Area under the curve from $x = 0$ to $x = 2a$ is given by: $A = \int_{0}^{2a} 2\sqrt{ax} \, dx$ Factor out constants: $A = 2\sqrt{a} \int_{0}^{2a} \sqrt{x} \, dx$ Using the identity: $\int x^{n} dx = \frac{x^{n+1}}{n+1}$ $A = 2\sqrt{a} \left[ \frac{2}{3} x^{3/2} \right]_0^{2a}$ Evaluate the definite integral: $= 2\sqrt{a} \cdot \frac{2}{3} \cdot (2a)^{3/2}$ $= 2\sqrt{a} \cdot \frac{2}{3} \cdot 2\sqrt{2} \cdot a^{3/2}$ $= \frac{8\sqrt{2}}{3} a^2$ |